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Abstract
Augmented quasiparticle (QP) mappings, as applied to indistinguishable point
sets of (Liouvillian) democratic-recoupled (DR) tensors, provide for a 1:1
invariant labelling of the underlying (disjoint) dual projective map carrier
subspaces, where the Liouville pattern basis set is defined via superboson
unit-tensor actions on a null space, |∅〉〉. The co-operative-action Liouville
algebras described here imply parallel limitations to Jucys graph recoupling
and its related Racah–Wigner (R–W) algebras once DR indistinguishable point
tensorial sets are involved, as in non-SR Sn, n � 4 dominant (NMR) spin
symmetry. The importance of Sn G-invariants, as labels for disjoint carrier
subspaces in such automorphic spin symmetries, arises from their essential
role in defining the quantal-completeness of indistinguishable point sets. From
the established properties of augmented-QPs as super-bosons (Temme 2002
Int. J. Quantum Chem. 89 429) (i.e., beyond the earlier Hilbert-space-based
Louck and Biedenharn boson pattern views), insight into Atiyah and Sutcliffe’s
(A–S) assertions (Atiyah and Sutcliffe 2002 Proc. R. Soc. A 458 1089) on
the limitations of graph recoupling theory to distinct point sets is obtained.
This clarifies the wider analytic intractible of automorphic DR spin systems—
beyond the Lévi–Civitá cyclic-commutation (R–W) approach (Lévy-Leblond
and Lévy-Nahas 1965 J. Math. Phys. 6 1372) which holds for a mono-invariant
problem. For (rotating-frame) density matrix approaches to [A]n, [A]n(X)

and [AX]n(SU(2) × Sn) (dual) NMR systems, the focus is necessarily on the
specialized nature of indistinguishable point sets within multiple invariant-
theoretic-based, dynamical spin physics. Here, the GI(s) (GI-cardinality)
constitute an important part of the dual irrep set, {Dk(Ũ) × �̃[λ](ṽ)(P)}, with
combinatorics, as a central facet of invariant theory, playing a crucial role
in the concept of ‘quantal completeness’ and the impact of A–S’s assertion
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on the existing NMR tensorial physics. Clearly, the role of Liouvillian
Yamanouchi projection, now as disjoint subspatial-based transformational
properties, defines such DR bases and their unit tensors. A brief outline is given
of the structure of augmented general-indexed Lévi–Civitá superoperators with
their multiple GI-labelled carrier subspaces.

PACS numbers: 02.10.−De, 02.10−v, 82.56.−b

List of Abbreviations Employed

CFP (SU(2))-based coefficient of fractional parentage
DR democratic recoupling
G-, GI group/group invariant
H a superboson carrier space
L–C Lévi–Civitá form
L̂ a Liouvillian
QP Quasiparticle
R–W Racah–Wigner (algebra)
SR (in mathematics context) simply-reducible
TRI time-reversal invariance
YM Yamanouchi terms (as Sn labellings)

(λ � n), is a number partition; |∅̃〉〉 and |kqv〉〉 represent, respectively, a null and its
corresponding Liouville space basis. Wybourne suppressed leading-part notation employed
in 〈r2r3〉Sn irrep and χ 〈.〉 character notation.

Z(C) and Z(R) represent complex and real algebras, whereas Zn0, etc notations refer to
graph schemata; �̃ is a (Gel’fand) (L) shift.

1. Preamble

The theories associated with geometry-phase, quantum-rotational tunnelling or nutational
spectral (and similar) aspects of NMR spin dynamics [1–3] are notable for the depth and range
of the theoretical formalisms on which they draw. These include Jucy–Vanagas sanctuary
and related recoupling theories [3, 4], TCP/TP (or time-reversal) invariance [4, 6, 7], and
not infrequently also gauge-invariance [1] well established in quantum-rotational tunnelling.
Because the nature of the quantum description changes in NMR, i.e., from one pertinent
to open driven system(s), in the pulsed cycle, to one involving classic closed conserved
system(s) in the evolution or relaxational period(s), spin dynamics and its formalisms
[7–12] remain of considerable interest. In strong contrast to other spectroscopic techniques
[13], NMR spin dynamics explicitly draws on the unitary group defined Z(C) algebras [10]
pertinent to Magnus expansions. In addition, for analytic progress in handling many NMR
problems and their associated model spin dynamics [3], some appreciation of applicable
mathematics [14–18] pertinent to (inner recoupled) (abstract L̂-induced automorphic [8])
tensorial (point) sets is required. Naturally, the feasibility (wreath-product) group [9], typical
of early rotomer NMR studies, provides models for much of reaction dynamics. However,
the model spin symmetries considered here are those of direct Liouvillian-structure-based
automorphic NMR spin symmetries. They are of specific interest on account of being derived
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from uniform spin-based indistinguishable point sets and because they draw on invariant-
labelled disjoint carrier subspaces in their treatment of superboson set projective mappings
[11]. Because R–W algebras are based on Zn0-linked chains of graph-based 3j/6j coefficients
[10], SU(2) × Sn automorphic spin symmetries by their inherent nature question the limits of
R–W algebras and its general applicability to (rotating-frame) dual group NMR problems
[19–22].

Whilst the nature of tensorial formalisms for distinguishable point sets (spins) and
their unitary graph-recoupled tensors are well established [3, 10], the contrasting forms for
dual group-based generalized uniform point tensors [11], whether derived via democratic
recoupling (DR) [12, 13] or via dual unit tensors (Hilbert boson pattern algebras of [11])
are less well defined. A recent assertion given by Atiyah and Sutcliffe [14] (A–S) stresses
that explicit recoupling procedures (and in consequence the established Racah–Wigner (R–
W) treatment of the matrix formalisms in NMR spin dynamics [3, 4]) are strictly limited to
distinguishable point sets. This raises two further interesting general questions: namely ‘what
form of applicable mathematics is proper and pertinent cf to indistinguishable dual group-
based identical point sets’ and/or their related generalized Sn DR-based pure spin tensorial
sets, and the related question for Liouvillian higher n-fold abstract spin spaces of the nature of
generalized forms of Lévi–Civitá operators? To the best of our knowledge, no n � 4 indexed
permutational-group analogue (for identical point sets) to R–W algebra of [10] is known,
which retains generally applicable to matrix descriptions of abstract automorphic space spin
physics once multi-invariant DR point sets become a dominant feature. One suspects that
the standard Lévi–Civitá form with its first intimations of DR non-graphical recoupling is a
specific form restricted to 3-fold point highest mono-invariant forms of problem [12]. The
need for the explicit treatment of auxiliary labels in Liouville space formalisms assists one
here, by making one ask further precise fundamental questions that concern the nature of the
underlying indistinguishable point-set-induced limitations to R–W algebra, once both DR and
multi-fold invariant structures are involved. It is these questions essentially in a superboson
pattern mapping-on-Liouvillian-carrier-space scenario [11–16] which provides the essential
motivation for this paper with its combinatorial, discrete mathematics and density-matrix
formalism bias.

In considering such indistinguishable point sets, our approach necessarily focuses on the
physics of (Liouville) projective carrier (sub)spaces derived from (automorphic) dual group
actions as projective mappings, where these constitute a superboson pattern (as unit-tensors)
algebras [15]. Clearly, this viewpoint represents an augmented view of the classic Hilbert
boson mapping formalism given by Louck and Biedenharn [11]. It is the need for these carrier
subspaces to be defined by invariant designations [19–22], as well as dual group actions that
gives a cogent insight into the persistence of an ‘open problem’ in automorphic-structured
(NMR) spin physics. Knowledge of the underlying Sn combinatorics [16–19], of generalized
(⊗Dk=1(U))n (Liouvillian SU(2)) CFP-schemata [3] and their cardinalities, i.e., based on [5,
6]) of multiple invariant Sn group action-defined NMR systems [11, 15], are all necessary
precursors to any real understanding of indistinguishable point-set-based limitations inherent
in applicable R–W algebras, once the basis is restricted to an automorphic abstract pure spin
form.

2. Contrasting Hilbert and Liouville views of non-SR co-operative SU (2) ×Sn algebras

The utility of the graphical propagative Jucys–Vanagas diagrammatic recoupling theory to DR
multiple spin NMR systems (in contrast to earlier form [3, 4]) is essentially limited to a single
example. In this case, the mono-invariant Lévi–Civitá (L–C) operator as a DR interaction acts
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on a (general uniform Ii) 3-spin ensemble. This then generates additional cyclic commutation
relationships which elegantly resolves [12] the specialized matrix structure derived under R–
W analysis to yield a Jacobean tri-diagonal form1. Beyond this single established example,
specific (combinatorial) features of Liouvillian NMR tensorial formalisms (cf Hilbert-space
views) arising in DR (integer {ki}) point sets necessarily must draw on the physics of
SU(2) × Sn-based indistinguishable (inner recoupled) tensorial sets, now with the inclusion
of their explicit auxiliary labelling. The latter clearly spans the various multiple component
Sn group invariants. It is these additional explicit labels which are fundamental to treating
the (Liouvillian) ‘quantal-basis set-completeness’ condition, because the (dual) permutation
group (in contrast to that of the simple SU(2) case) is intrinsically a non-simply-reducible
(SR) group [15–20]. Hereafter, the role of group invariants and their inherent cardinalities,
beyond both the restricted mono-invariant 3-spin system [12] above and earlier Hilbert-space
conditions, equation (5) is central to extending quantum-Liouville formalisms to non-trivial
automorphic [A]n(X), [AX]n NMR spin systems.

One should first stress that the superboson formalism (as a pattern algebra over augmented
quasi-particles cf earlier pattern algebra [11]) is closely correlated with the corresponding inner
recoupled unit tensors, here denoted by

〈〈(
2k

.

k±q
0
)〉〉

, in sense that, e.g.,

(
s2

1

) ≡
〈〈(

2k
2

k + q
0

)〉〉
(1)

with

(
s2

1

) ∣∣ ∅̃ 〉〉 →
∣∣∣∣
(

2k
2

k + q
0

)〉〉
(2)

as a component of basis set, (≡ |kqv�), with the link between Liouville space and the earlier
simple Hilbert-space formalism in terms of group action provided by the group actions,

Ũ
〈〈(

2k
2

k ± q
0

)〉〉
≡ U

〈〈(
2k

2

k ± q
0

)〉〉
U†. (3)

In consequence, the equivalent Liouvillian between-ness representations, based on 2k, are,
e.g., at most 2-unit multiples of the simple Hilbert-space forms, as indicated in [15].

In this context, it the structure of dual projections over carrier space(s) (inherent in
augmented or Liouvillian quasi-particle mappings) that play a special role in the (Liouville
space) logic, one which is quite distinct from that in the Louck–Biedenharn 1979 Hilbert-
space formalism [11]. Now, it is the dual projective carrier space that yields a necessary
condition for the completeness of DR Liouvillian tensorial sets. This arises because the dual
group formal mapping is now over a set of disjoint carrier subspaces [15]. Hence, the simple
combinatorial equation for (dual) Hilbert spin space completeness is replaced by a formal
carrier space mapping specific to invariant-based indistinguishable multi-point sets, below,
with the role of invariant labels as important as that of the group irreducible representations
(irreps) themselves. Hence, invariant theory is seen as an essential part of group theory once
automorphic Liouvillian NMR spin systems considered.

One further key issue arises here, namely the substantive cardinality associated Sn group
invariants [5–7, 19, 20]—a facet of invariant theory and the class structure of group theory

1 As indicated above the limitation of L–C operators within some mono-invariant scenario to at-most S3-fold
permutational DR problems represents an equivalent origin to many of the questions posed here concerning DR
identical integer-rank unit tensorial sets.
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itself. It also explains in part why the Liouvillian spin dynamics of extended identical multi-
spin NMR systems has not been adequately understood to date, despite an earlier recognition
[15] of salient features of carrier space for (augmented) QP Liouvillian projective mappings.
Naturally, the (dual group) set logic here arises in the context of both classic groups and
permutation groups being explicit subgroups of the GLn group [13]. Recent progress in
the development of Sn theory, its algorithmic combinatorics as part of symbolic computing
[16–18] has had significant impact on physics applications based on combinatorics, including
those of [19–22] of more recent times. The fuller role of disjoint subspaces in the dual
algebras of the [A]n(X), [AX]n DR NMR systems (cf earlier (or related) work [18–22]) and
their purely abstract spin space NMR dynamics application has not been explicitly addressed
earlier, despite these formal mappings derived from group actions being set out in earlier
discussions of superbosons as augmented quasiparticles [15].

3. Role of dual projective mappings over carrier (sub)spaces

3.1. Context: quasi-particle Hilbert projections

Prior to discussing Liouvillian projective mappings, one needs to establish the (cf) notation(s)
involved and to highlight the contrasting properties under group actions first in the simple
Hilbert spin space case and subsequently for spin dynamics formalisms. Hence, the original
Louck, Biedenharn work on primary Hilbert-space QP projection over a carrier space [8] and
their pertinence to Gelf’and (shape) algebras are referred to, before introducing (augmented)
quasiparticles (‘QP bosons’) and their analogous (integer rank) unit tensors [10]. In particular,
the SR simple unitary and dual projective mappings derive from the U (simple) and U × P

(dual) group actions that yield the distinct projective mappings:

U : H −→ H{Dj(U)|U ∈ SU(2)} (4)

for j half-integer rank, and (below) over indistinguishable point sets (alias Hilbert DR tensorial
sets) represented by

U × P : H −→ H{Dj(U) × �[λ](P )|U ∈ SU(2);P ∈ Sn} (5)

in which λ is a typical (two-part) permutational group irrep. One notes here that the
completeness of the Hilbert dual group irreps was defined by the simple combinatorial
expression,

maxj=n/2∑
j

Dj (U) × �[(n/2)+j,(n/2)−j ], for j � (0)(1/2). (6)

In these Hilbert-space sets of mappings, there is clearly no explicit reference to the group
invariants or their cardinality, simply because the orthogonality of R–W algebra is already
defined by standard conditions [8].

3.2. Contrasting (L) projective maps over invariant-labelled carrier subspaces

For the comparable augmented QP (Liouville-space superboson) (pattern algebra) spans the
following further sets:{

s2
1 , s1s2, . . . , s

2
2

}; {
s2

1, s1s2, . . . , (−)s2
2, (its adjoint subset)

}
(7)
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based on (cf to simple Hilbert QPs) integer rank k unit-tensor intensive augmented-QP forms,
and, e.g., (Liouvillian) SU(2) (k = 1; k � q � −k) (ordered) structures:{〈〈

2
2
.

k + q = 2
0

〉〉
:

〈〈
2

k+
̃=2
.

k + q = 1
0

〉〉
:

〈〈
2

2
.

0
0

〉〉}
;
{

.. ;
〈〈

2
k−
̃=0

.

k − q = 1
0

〉〉
; ..

}
,

for 
̃, integer � k, (8)

or similarly for generalized multispin integer rank Gelf’and forms and their associated tensorial
set bases. Clearly, these derive from augmented QPs, as unit tensor(s) acting on null (L) bases
and yield similar transformational properties for both unit operators and related (Liouville)
pattern bases. Strong distinctions exist between the simple/distinct point set unitary and dual
group actions (on indistinguishable point sets) as projective mappings, with the form

Ũ : H̃ −→ H̃{Dk(Ũ)|Ũ ∈ SU(2)} (9)

retained for distinguishable (non-identical) spin or point sets, or the single SU(2) spin
case, whereas the indistinguishable point set case is defined by explicit invariant-labelled
(augmented) dual mappings:

Ũ × P : H̃ −→ H̃{Dk(Ũ) × �̃[λ](ṽ)(P)|Ũ ∈ SU(2);P ∈ Sn, ṽ Sn group invariant}; (10)

not only the dual group irreducible representations (irreps) given here but also ṽ is now
a specific retained label (rather than just an auxiliary label, as in distinct point set graph-
recoupling theories). Further, because the ṽ invariants underlying the indistinguishable
(Liouvillian) point sets induce a set of disjoint carrier subspaces over which the augmented
QPs now act, the augmented carrier space is defined by its invariant-labelled subspaces:

H̃ ≡ ⊕ṽH̃ṽ , (11)

in contrast to the Hilbert-space form. Naturally, the full extent of these disjoint subspaces
(subsets) is itself defined by the cardinality of the Sn group invariants, with the (Liouville) set
‘quantal-completeness’ governed by the dual representations:∑

ṽ

Dk(Ũ) × �̃[λ](ṽ)(P) ≡ ⊕(ṽ)T
k
{ṽ}(1..11), for ṽ ∈ Sn invariant set, (12)

where the RH form over integer rank k stresses that the ‘like’ inner-tensorial properties from
density matrix formalisms with each specific invariants contributing a δṽṽ′ further orthogonality
condition, which applies over all the specific disjoint carrier subspaces. Analogous subspatial
ṽ-augmented-Yamanouchi Sn group projective actions defined via

P : |ỹ : (ṽ)kq〉〉 ≡
∑
ỹ ′

�̃
[λ]
ỹ ′ỹ (ṽ)(P)|ỹ ′ : (ṽ)kq〉〉, for ỹ = (ĩ1 . . . ĩn) (13)

provide the Liouvillian Sn group formal transformational properties. These now derive
from (m � 4)-(word)partite [λ̃] Liouvillian irreps implicit in [λ̃] = [λ′] ⊗ [λ′′]—where
the (tilded) ỹ’s are derived (Liouvillian) (augmented) Yamanouchi formal symbols, noting
that the decreasing leading component lexical order S6 irrep set, e.g., corresponds (see, e.g.,
[23]) to Yamanouchi (YM) series:

111111; 111112; 111122; 111123; 111222;
111223; 111234; 112233; 112234,

where the underlined YM label corresponds to the self-associate (self-conjugate) [321] irrep.
Naturally, the range of Yamanouchi symbols and their transformational results applicable
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in Liouville space derive from non-SR ⊗[λ] product forms (as cf to SR Dk(Ũ) (Edmonds)
rotations) which characterize the distinctions observed between indistinguishable (dual) spin
point sets, i.e. from the contrasting simple distinct unitary point sets, in which graph recoupling
and R–W algebra suffice to define the (distinct {ki})-based inner tensorial sets.

3.3. Invariant labelling of carrier subspaces for [AX]n bis-augmented systems

Since the above paragraph does not encompass all possible types of NMR spin systems,
additional specific labelling arises in handling the group invariants of [AX]n spin systems.
Naturally, the resultant invariant cardinalities are evaluated as products of the ṽ, |GI |(n)

original terms of the separate spin clusters, which extends the impact of the original non-SR
considerations. Hence, for the above bis-model system with n = 4 identical spins associated
with each cluster, each contributes its own three monocluster invariant label subset, which in
the spirit of J–Q Chen’s earlier work [23] becomes

{[31] ⊃ [3] ⊃ [2]; [31] ⊃ [21] ⊃ [2]; [22] ⊃ [21] ⊃ [2]}, (14)

but one requires nine resultant product-type invariants to fully define the range of bis-cluster-
based disjoint carrier subspaces, H̃(⊗).

4. Sn invariants and their cardinality as TR-based Weyl properties

A direct statement of the cardinalities of S2n invariants is available (without the need of quasi
lattice points used previously [16] from a careful reading of Corio’s 1998 work [6], augmenting
Weyl classic discussion [5] of the role of time-reversal invariance (TRI) in theoretical physics
[7] and the latter’s views of the interrelationship between TRI and permutations, specifically
over (Î• Î), (Î• Î) pairs of enbracketted scalar products. This then gives (as shown using direct
hooklength character enumeration in [19] in some detail) the group invariant cardinality in
terms of a specialized sum of (even) group characters [19] (in the Sn group form of reduced-
Wybourne notation of [16]) as

|GI |2n ≡ χ
〈0〉
12n + χ

〈2〉
12n + · · · + χ

〈2(n−1)〉
12n , (15)

a closed analytic result2, consistent with numerical results derived from a corresponding
SU(2) unitary group (⊗Dk=1(Ũ))n recursive bijection scheme for the coefficients of fractional
parentage CFP(i) coefficients; clearly the zeroth component here is simply the scalar (or
group) invariant cardinality discussed elsewhere—e.g., as equation (4) of [20]. This procedure
itself is simply an augmented more direct discrete mathematics view of the earlier Chen–
Moraal–Snider formalism [3]. The cardinalities derived by this stepwise recursive bijection
are naturally a result of an end-of-chain addition (or Zn0) process, whereas taking the sum of
squares of CFP(i) over the nth full set is similar to a Z22-based process. In contrast to the
original bijective mapping, one should stress that the sum of CFPs on ‘n’ only yields the single
‘2n’th-based CFP(0) value shown underlined in equation (16).

To exemplify these processes, the n = 5, 6, 10, (11), 12, 20 (etc) sequence are of
interest in respect of the bijection and sum-of-squares unitary processes, with second column

2 The number of invariant tensors arising under polynomial tensor-contraction is a different GL group-based (even)
char-sum result.
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containing the |GI |(n) cardinalities indicated by n-fold bold-face indices:

n: C(0) C(i)

5: 6 15 15 10 4 1

6: 15 36 40 29 15 5 1

· · ·:
10: 603 1585 2025 1890 1398 837 405 155 45 9 1

11: 1585 4213 5500 5313 4125 2640 1397 605 209 55 10 1

12: 4213 11298 15026 14938 12078 8162 4642 2211 869 274 66 11 1

..:

20: 13, 393, 689 37, 458330 54, 237210 61, 430895 59439429 50, 779476 38, 882740

26, 876830 16, 818610 9, 528500 4, 877300 4, 877300 2, 246465

925395 338010 108186 29849 6935 1310 190 19 1

(16)

to yield (from the full CFP set of [20]) the n = 40-based 17, 047, 255, 430, 494497 primary
GI cardinality result for component Liouvillian of the heterfullerene [A]20[X]40 exocluster
Liouvillian (of 11B20

13C40)—here for typographic reasons we have staggered the rows of
terms given for highest index value—whereas the |GI |(60) for group invariant of spin exocage
13C60 fullerene if required may be derived, e.g., via n = 15, 30, 60 CFP sequence, with
the character-sum expression equation (15) providing useful check on the bijection-derived
intermediate results. For modest values of 2n � 30 indices, the hooklength enumerative
calculation of group characters is particularly convenient. It has been traditional to depict
actual symmetric group invariants in terms of Chen et al [23] stepwise subgroup route-map
hierarchies, as in equation (14). Fuller discussion of these techniques and examples of their
resultant cardinalities may be found in the earlier cited works. Usage of Chen-type subgroup
hierarchies as evaluative tool soon becomes rather tedious; likewise use of full Sn character
tables above order 14,16 is not practical and rapid ‘n’ expansion of λ � n soon slows symbolic
computing evaluations [18], whereas hooklength χ

〈.〉
1n s of equation (15) are simple to obtain.

5. Discussion in the Liouville NMR system context

Consideration of 3n-j or 3n-k recoupling techniques up to 6, 12, 18-j (k) concatenated
symbols only confirms that such methods and matrix representational evaluations based on
them are essentially graph diagrammatic forms that do not properly allow for DR and Sn

induced indistinguishable point sets. The problem of Liouvillian basis sets themselves being
multi-invariant labelled, implied in the above GI-cardinality analysis, further complicates
the problem. Even for the early mono-invariant Hilbert-space indistinguishable three spin
problem3, discussed in [12, 19, 20], Lévy-Leblond and Lévy-Nahas’s elegant Lévi–Civitá’s
operator method [12] was only able to find a tractable general solution for the three identical
general spin problems [A](Ii )

3 basically on account of the existence of a Jacobean tridiagonal
form. The latter arose from a set of cyclic commutator conditions imposed by the (mono-
invariant space-based) Lévi–Civitá operator, typical of another 1960s work [3]. The use
of more generalized permutational DR recoupling operators, structured over multi-invariant
subspaces as implied above, to extend the restricted solution obtained from the conventional
Lévi–Civitá operators remains to date an unproven approach, since it requires one to obtain
simultaneous eigensolutions over the full set of invariant-labelled subspaces. Even the inner-
product structure inherent in the full [AX]3 bicluster NMR problem is likely just enough to
destroy the analytic tridiagonal eigensolutions found for the simple [A]3 case [12]. Whilst

3 Largely overlooked in recent NMR work [22] unfortunately, together with the fact of the [A]3 case being a
specialized maximal mono-invariant form.
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further more general insight into applicable mathematical reformulation of various [A]n, [AX]n
spin dynamical problem is required here, from a strictly NMR perspective, there are technical
reasons why former mono-cluster automorphic spin symmetry systems are of little pertinence
or interest. This arises because (from simple [A]2 system [24]) the [ñ] symmetric subspace
has been long recognized as a null space, whilst examinations of any other subspace of
such NMR dynamical problems are beyond the bounds of the technique, since no initial
φk

q([λ �= n])(t = 0) non-symmetric coherences can be generated by NMR pulse methods.
The role of the Sn group in NMR spin problems was set out originally by Balasubramanian
[8] back in 1983. The use of apparatus of group chain-irreps and their subduction reduction
coefficients, including their Sn ⊃ Sn−1 ⊃ · · · ⊃ S2 stepwise subgroup chain properties as
convenient ways of presenting specific component group invariants, may be traced to the
extended particle physics writings of Chen et al [23]. However, the nature particle physics
also shows a similar general avoidance of indistinguishable particle point set-based problems
to that found in electronic structure areas. Hence, despite the wealth of new Sn algorithmic
methods of symbolic and discrete mathematics [16–20], as yet they have not been assimilated
into applicable mathematics for use in treating indistinguishable point set problems, beyond
the simple Lévi–Civitá methods invoked in the earlier-cited work [12]. Because electronic
structure problems retain their real spatial coordinates, and particle physics its distinct particle
labelling, indistinguishable point-set problems are rare outside NMR. However one such
case is known, namely that of an analogous automorphic four-body conventional spectroscopy
problem; on symmetry grounds, this was held by Galbraith [13] in the 1970s to be non-analytic
but no mention was made of the constraints inherent in applying graphical R–W algebras to
implicit Sn algebras.

One further notable spin property of interest arises in (single JAX-based) monocluster
[A]n, [A]n(X)(SU(2) × Sn) systems; it have been established that SU(2) NMR clusters have
an innate ability to undergo renormalization to a subset of SU(m > 2) problems, in accordance
with the effective commutator-based intra-cluster interaction non-observability rule, known
from the existing spin physics literature [25].

6. Concluding remarks

A recent assertion given by Atiyah and Sutcliffe [14] has provided impetus to the re-assessment
of earlier density-matrix tensorial set formalisms [3] in the context of indistinguishable point
sets. By pointing out that generalized-indexed forms of Lévi–Civitá (super)operator(s) (over
Sn dual tensorial sets) are based on similar H̃ṽ invariant-labelled disjoint subspace constraints,
the physics of indistinguishable point sets has been extended into the realm of Sn-invariant
theory and Sn-combinatorics. The projective carrier space mapping methods utilized here
provide an in-principle overview of the intrinsic structure of these more generalized Lévi–
Civitá Liouville-operators applicable to wider indistinguishable point tensorial set problems,
noting here that the presence of multi-invariant-labelled disjoint subspaces of itself may simply
require one to seek simultaneous eigensolutions over all such subspaces. Much conventional
physics has yet to use even the advanced intrinsic structures of Liouvillian (spin) dynamics,
e.g., involving direct eigenfrequency solutions. This fact alone provides one with a further
definitive reason for stressing the value of such Liouvillian algebras and mappings, as areas
within which invariant (-subspace) labelling are totally explicit. The utility of carrier space
mapping techniques employed here is particularly evident, e.g., in the ease with which they
link Liouvillian spin-alone-spatial properties to their Hilbert analogues.

An explicit role for combinatorics, employing the elegance of (Rota) invariant theory, has
been obtained in discussing the physics of dual tensorial sets and describing its ‘quantal-basis
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set completeness’ condition, for indistinguishable point sets characteristic of Sn automorphic
NMR spin symmetries. Various pointers to the nature of further applicable algebras has
been given, which allow for the replacement of graph-based R–W hierarchies on treating the
remaining ‘open problem’, that of matrix representations based on indistinguishable point
sets-defined abstract spin-alone space dual tensors. As presently constituted, the algebra of
induction/subduction reduction-coefficients under Sn group chains of [23] does not appear
directly suitable for a generalized reformulation of the outstanding open problem, which is
viewed here as a form of applicable mathematics. However, DR-recoupled indistinguishable
point sets clearly deserved their own form of appropriate algebra—comparable to our earlier
Liouville-space study [15] of non-SR group co-operability in terms of carrier space mapping.
Beyond any invariant theoretic view of quantal basis completeness, the above discourse
represents some conceptual overview on how to replace R–W theory if one should wish to
treat DR dual tensor problems that involve indistinguishable point sets.
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